Electrical Stimulation in Tissue Regeneration
نویسندگان
چکیده
That human body generates biological electric field and current is a well-known natural phenomenon. In 1983, electrical potentials ranging between 10 and 60 mV at various locations of the human body were measured by Barker (Foulds & Barker, 1983), who also located the so-called epidermal or skin “battery” inside the living layer of the epidermis. Naturally occurred electrical field in human body was also reviewed in 1993 (Zipse, 1993). Bioelectricity is inherent in wound healing. An injury potential occurs in the form of a steady direct current (DC) electric field (EF) when a wound is created. This endogenous EF has been shown to guide cell migration to sprout directly toward the wound edge. On the other hand, wound healing is compromised when the EF is inhibited. McCaig et al. (McCaig et al., 2005) revealed that electrical events induced by injury potential could persist for a long time and present across hundreds of microns rather than be confined to the immediate vicinity of the cell membrane. Moreover, a voltage gradient called “action potential” across cell membrane is known to trigger cells to transmit signals and secrete hormones. The electrical resistivity of biological tissues obviously varies due to the variation in tissue composition, such as tissue type and density, cell membrane permeability, and electrolyte content. The resistivity of these biological tissues has been measured by means of bioelectrical impedance analysis (BIA). When nutritional and metabolic disorders occur, the electrical properties of certain tissues become abnormal. BIA has therefore been used to diagnose human organ malfunctions. However, it remains difficult to delineate living tissue, such as bone tissue, because this tissue is a composite material that is anisotropic in structure and inhomogeneous in composition. For example, in 1975, Liboff (Liboff et al., 1975) reported a resistance ranging widely from 0.7 to 1 × 105 ohm/cm in human tibia. Recent advances in computed three-dimensional microtomography (microCT) now enable us to clarify the interrelationships between the electrical properties and the microstructures of human bone. The electrical property of bones varies widely caused by many factors such as the unevenly distributed and electrolyte-filled pores, moisture content, pH and conductivity of the immersing fluid. Nevertheless, it remains both essential and possible to normalize the resistance and the capacitance of different bone types. Electrical measurements provide a tool for the rapid quantitative diagnosis of bone
منابع مشابه
Comparative Use of Electromyography in the Evaluation of Electroacupuncture and Transcutaneous Electrical Neural Stimulation (TENS) Effect on Regeneration of Sciatic Nerve in Dog
Objective-To determine the effect of Electroacupuncture and Transcutaneous Electrical Neural Stimulation on Regeneration of Sciatic Nerve in Dog Design - Experimental in vivo study. Animals - A total of 15 adult male mixed bred dogs, weighing 26±2.6 Kg/BW with aging of 42±6 months, which were divided into three groups of 5 dogs. Procedures-Under general anesthesia, the right sciatic nerv...
متن کاملImplantable Tissue Regeneration System Using Electrical Stimulation
We introduce three implantable tissue regeneration systems; an implantable cell graft culture system, an implantable electrical stimulation system for bone regeneration, and a liquid crystal polymer (LCP)based bone regeneration device. These devices allow electrical stimulation to stem cell grafts under in vivo circumstances. After a cell culture using the implantable cell graft culture system,...
متن کاملAge-Dependent Regeneration by Using Electromyographical Study Foliowing Sciatic Nerve Injury in Rat
Purpose: There are extensive evidences that show axonal processes of the nervous system (peripheral and/or central) may be degenerated after nerve injuries. Axonal regeneration is relation to various factors. In this investigation we decided to evaluate the effects of nerve regeneration age-dependent on injured rat sciatic nerv. Materials and Methods: For this study, the right sciatic nerve of...
متن کاملEffects of electrical stimulation on rat limb regeneration, a new look at an old model
Limb loss is a devastating disability and while current treatments provide aesthetic and functional restoration, they are associated with complications and risks. The optimal solution would be to harness the body's regenerative capabilities to regrow new limbs. Several methods have been tried to regrow limbs in mammals, but none have succeeded. One such attempt, in the early 1970s, used electri...
متن کاملElectrical Stimulation in the Bone Repair of Defects Created in Rabbit Skulls.
Electrical stimulation has been used in different conditions for tissue regeneration. The aim of this study was to analyze the tissue response of defects created in rabbit skulls to electrical stimulation. Two groups were formed, each with 9 New Zealand rabbits; two 5 mm defects were made, one in each parietal, with one being randomly filled with autogenous bone extracted as particles and the o...
متن کاملHistomorphological Evaluation of Transcutaneous Electrical Neural Stimulation in Healing of Experimentally Induced Partial Hip Joint Cartilage Defect in Rabbit
Objective- To determine the effect of the transcutaneous electrical neural stimulation on healing of hip joint cartilage defect in rabbit.Design- Experimental in vivo study.Animals- 12 adult New Zealand rabbits were used.Procedures- Under effective the right femoral head was subluxated and the maximum accessible cartilage was denuded up to subchondral bone using dental bit in each rabbit. Then ...
متن کامل